Current Management of Shoulder Injuries in the Overhead Athlete

Joshua D. Nelson, MD, PharmD
University of Kansas Medical Center
Department of Orthopaedic Surgery
Division of Sports Medicine
Team Physician Kansas City Chiefs
Team Physician Kansas City Royals
Disclosures

• Nothing to Disclose
• Patient videos, consent for educational use
• Smith and Nephew
 o Education Support, Arthroscopy Lab
Anatomy

Coracoacromial Ligament
Acromion
Clavicle
Supraspinatus
Infraspinatus
Tendon of Long Head of Biceps
Humerus
Torn Rotator Cuff
Acromion
Bursa
Coracoid process
Clavicle
Humerus
Humeral Footprint

- Thickness of Footprint
 - Supraspinatus Avg thickness 12-14 mm
 - Infraspinatus Avg thickness 13-15 mm
 - Subscapularis Avg thickness 17-19 mm
- Dugas et al 2002 JSES
Rotator Cuff Tears

- Rot cuff tear types
 - Partial Thickness
 - Articular sided (3x as common)
 - Supraspinatus (usually non-throwing athlete, older)
 - Infraspinatus (usually throwing athlete, younger)
 - Internal Impingement
 - Bursal sided
 - Full thickness
 - Intrinsic Factors
 - Extrinsic Factors
 - Traumatic
 - Full thickness retracted (massive)
Normal Cuff
Partial Thickness Tear
Full Thickness Tear
Traumatic Cuff Tear
Massive Cuff Tear
• Partial Thickness

 o Articular Side
 • Internal Impingement
 • Intrinsic Factors

 o Bursal Side
 • Outlet Impingement
 • Extrinsic Factors

• Full Thickness

 And/Or

• Or
Classification of Partial Thickness

- Ellman
 - Location of tear
 - Bursal
 - Articular
 - Intratendinous
 - Depth of tear
 - Grade I = <3mm (25%)
 - Grade II = 3-6mm (25-50%)
 - Grade III = >6mm (>50%)

- JBJS 2012 No evidence for 50% “Line in Sand”
Why?
Biomechanical?
1. Biomechanical Factors

- **Supraspinatus**
 - Articular side has half the strength of the bursal side
 - Nakijima et al 1994 JSES
 - Articular sided bundles less organized, thinner
 - Articular sided tears 3-5x more common than bursal

- Strain in the intact tendon fibers increases rapidly after 50% of tendon thickness lost
 - Yang et al 2009 JSES
2. Intrinsic Factors

- Vascularity
 - Funakoshi AJSM 2010
 - Contrast Enhanced Ultrasound showed a decrease in the articular side of the rotator cuff with increasing age, no difference on the bursal vascularity
 - Rathbun CORR 1990
 - Critical zone of hypovascularity near the insertion of the supraspinatus correlates with degeneration

- Increasing age, decreased blood supply correlates with articular sided tears
 - Sano et al 1999 JSES
2. Intrinsic Factors

- Genetic Factors: Increased RR for 2nd and 3rd generation relatives of patients with RCT under age 40
 - Tashjian et al 2009 JBJS

- Acromion morphology usually normal in articular sided PTRTC tears
 - Ko et al 2006 JSES
 - Ozak et al 1988 JBJS
3. **Extrinsic Factors**

- **Trauma**
 - Dislocation
 - Can result in partial thickness or full thickness tear

- **Mechanical Compression** by coracoacromial arch
 - Bursal sided tears
 - Scapular Position
Internal Impingement

Seen in overhead athletes
- Infraspinatus and post/superior labral wear

What is it?
Why does it produce similar pathology?
Evolution of Internal Impingement Etiology
• 1985 Andrews
 o “Large eccentric traction force on the supraspinatus and infraspinatus during throwing motion”
Davidson et al 1995 JSES

- Minor instability and fatigue of the dynamic stabilizers causes anterior subluxation and secondary impingement and repetitive microtrauma.
• Burkhart, Morgan, Kibler 2003 Arthroscopy
 o An altered posterosuperior rotation point of the humerus from posterior capsular contracture, GIRD, and repetitive torsional and shear overload generated by hyperexternal rotation
Diagnosis

• Physical exam
 o Partial Thickness Cuff Tear
 • Supraspinatus – strong but painful in PTRTC
 • Positive Impingement tests with PTRCT
 o Neer, Hawkins, Impingement test
 • Infraspinatus strong min pain
Diagnosis

- In the overhead athlete - PTRCT is often associated with posterosuperior labral tear (30%-50%)
 - Levy et al AJSM 2011
 - Morgan Arthroscopy 1998
 - Ryu Arthroscopy 1992
 - Snyder Arthroscopy 1991
 - Andrews et al AJSM 1985
Labral Tears

- Shoulder socket shown from side view
- Glenoid (shoulder socket)
- Labrum
- Capsule
- Biceps tendon
- The labrum is torn from front to back (anterior to posterior)
- SLAP lesion
Diagnosis

• Physical exam
 o Labral Tear

 • SLAP – Obriens, 90/90, Speeds, Hawkins

• Anterior – Apprehension/Relocation, Inferior load

• Posterior – Posterior load and Jerk test, Directional loading
What Happens After Injury
Inflammatory Phase

- Begins 3-7 days after tendon injury
 - Hematoma
 - Platelet activation
 - Migration of cells from fascicles, epitenon, endotenon
Formative Phase

- Begins around week 8 after injury
- Fibroblasts produce collagen (type III > type I)
 - Initially more Type III, slowly becomes more Type I
- Tenocytes become the main cell type
 - Increased traction forces
 - Requires 5-8 weeks to become mechanically solid
Remodeling Phase

 o Better organization and cross-linking
 o Complete tendon regeneration is never achieved
 o Replaced tissue remains hypercellular

1901 Waseca EACO Flour team—State Champs (MN Historical Society)
Growth Factors in Cuff Healing

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 8</th>
<th>Week 16</th>
</tr>
</thead>
</table>
| Inflammatory| bFGF
BMP
COMP
CTGF
PDGF
TGF
IGF | BMP
CTGF
PDGF
bFGF | BMP
bFGF
COMP
PDGF
TGF
IGF (Cont until 24 weeks) |
| Formative | | | |
| Remodeling | | | |
Non-Operative Progression

- 25-35% of PTRCT progress to full-thickness tears with persistent symptoms
 - Kartus et al Arthroscopy 2006
 - Safran et al AJSM 2011
 - Yamanaka et al CORR 1994

- Younger patients with PTRCT more likely to progress to full thickness tear, based on increased activity level
Non Operative Treatment

- Due to Scapular Malposition or External Impingement
 - Correct mechanics, scapular position
 - Improve ROM
 - Decrease GIRD if responsive to therapy
 - Improve periscapular strength
 - Subacromial Injection/NSAIDS

- Timing to Operative Treatment
 - 3-6 months usually accepted
 - Expected RTS
 - Biology of cuff healing
 - Time needed to heal
Operative Treatment

- **Arthroscopic**
 - Better visualization
 - Better assessment of normal tension
 - Less Invasive

- Labral Tears
- RTC Articular tear
- RTC Bursal Tear
- Impingement Lesions
- Intratendinous lesions
• MRI and Exam should result in an expected treatment course

• **Arthroscopic Exam may trump all**
 o Be prepared for all options
 o Prepare athlete for all post-operative possibilities
 • *May not be a debridement only*
Rotator Cuff Debridement alone

- Relieve mechanical irritation, remove inflammatory cells
 - Wolff 2006 JAAOS

- Debridement alone ± decompression for PTRCT <50% supported by most data
 - Cordasco et al AJSM 2002
 - Andrews et al 1985 Arthroscopy 85% satisfactory
 - Snyder et al 1991 94% satisfactory

- Risk of progression to full thickness tear 15%-35%, with higher clinical failures after debridement for tears >50%
 - Kartus et al Arthroscopy 2006

- Mazoue/Andrews AJSM 2009
 - 9/11 (81%) pitchers progressed to full thickness tear within 20 months of debridement
Takedown and Repair

• Results (>50% initial tear)
 o Deutsch JSES 2007 41 pts avg 49yo, 38 month f/u
 • 98% satisfied, 40/41 returned to previous level
 o Liem et al AJSM 2008
 • 21 overhead athletes, amateur, avg f/u 25 months
 o RTS 92% previous level
 o Itoi, Weber, Lewis, Miller show similar results
PASTA Repair
PASTA Repair

- Ide et al, AJSM 2005 avg 42yo, 39 month f/u
 - 16/17 good results
 - Only 2/6 overhead athletes returned to sport

- Castagna et al, AJSM 2009 avg 57yo, 24mos
 - 98% good outcomes
 - 41% pain on occasion with ABD/ER

- Sang-Jin Shin Arthroscopy July 2011 (Level 2)
 - PASTA vs takedown and repair for >50% PTRCT
 - 92% success in both groups
 - PASTA
 - Slower recovery, more pain, better integrity w/ f/u MRI
Posterior Release

• Posterior capsular release
 o Burkhart, Kibler, Morgan
 o Consider when athlete is a “Stretch non-responder”
 o May consider when GIRD present w elbow pathology
 o Allows humeral head to sit more inferior and posterior, decreasing abrasion with Internal Impingement
 o Aggressive post operative PT
• How Long Doc?

• What are the chances of being 100% Doc?

• Have you seen anyone come back from this Doc?
Return to Sport

- Based on outcome measure
 - Level of play
 - Age

- Levy et al 2010 AJSM Partial Thickness cuff tears with concomitant type II SLAP repairs
 - <50yo, no elite athletes
 - 53% incidence of cuff tear with type II SLAP
 - Similar UCLA scores, 92% returned to previous level
Return to Sport

- Neri et al. AJSM 2011 (Level 3)
 - 23 Elite overhead athletes
 - Kerlan-Jobe scores
 - PTRCT debrided <50% thickness
 - SLAP repaired if >5mm labral detachment from the glenoid rim
Return to Sport

- Neri et al. AJSM 2011 (Level 3)
 - 23 Elite overhead athletes
 - Overall 57% return to previous level

- Labral repair only – 80% return to previous level

- Labral repair and PTRCT – 12.5% return to previous level
Return to Sport - MLB

- Rothman Institute, Philadelphia
- Level 4 Study

 - Cohen et al, SportsHealth 2011
 - 4 seasons 2003-2006 for one professional baseball club
 - f/u 2 years minimum
 - 28 Shoulder surgeries on 27 players
 - 19 pitchers
 - 8 position players
 - Average draft position 15th round
 - 4 major league players
Return to Sport - MLB

- 22 Type II labral repairs
 - 7 returned to previous level (32%)

- 1 Labral debridement
 - Returned to previous level (100%)

- 1 Rotator Cuff repair – full thickness
 - Returned to higher level (100%)

- 1 Rotator Cuff debridement
 - Returned to previous level (100%)

- 1 Posterior Capsular Release
 - Returned to higher level (100%)
What we know

- Partial thickness tears are likely to progress to full thickness tears in the young athlete.
- The etiology for the tear should be addressed within reasonable limits and corrected if possible.
- MRI/MRA is not 100% sensitive or specific, so be prepared for all options.
- Small partial thickness tears do well with debridement +/- decompression.
- Symptomatic Tears >50% may benefit from repair.
Important Points

• Return to sport for high level athletes improves with less pathology

• There is no consensus on chances of returning to sport at or above previous level for elite athletes with current data

• Do not overlook need for posterior capsular release
Surgical Recommendations

- Articular PTRCT <50% = debridement +/- SAD
- Bursal PTRCT <50% = debridement, likely SAD
- PTRCT >50% = takedown and repair
- PASTA repair less predictable with current literature
- Posterior Capsular Release when unresponsive GIRD
Thank you