Foot and Ankle Injuries in the Athlete

Sports Medicine Symposium
July 20, 2013

Kevin McCarthy, MD

Department of Orthopedic Surgery and Sports Medicine
The University of Kansas School of Medicine
Disclosures

None
Foot and Ankle Injuries in NCAA Athletes 1988-2004

<table>
<thead>
<tr>
<th>Sport</th>
<th>Game Injuries Relating to the Ankle (%)</th>
<th>Game Injuries Relating to the Foot (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men’s baseball</td>
<td>7.4</td>
<td>0</td>
</tr>
<tr>
<td>Women’s softball</td>
<td>10.3</td>
<td>0</td>
</tr>
<tr>
<td>Men’s basketball</td>
<td>26.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Women’s basketball</td>
<td>24.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Men’s football</td>
<td>15.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Men’s lacrosse</td>
<td>11.3</td>
<td>0</td>
</tr>
<tr>
<td>Women’s lacrosse</td>
<td>22.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Men’s soccer</td>
<td>18.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Women’s soccer</td>
<td>19.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

NCAA Injury Surveillance System data
Outline

1. Inversion ankle sprains
2. High ankle sprains
3. Turf toe
1. Inversion Sprains
Inversion Sprains

• May be the MOST common injury in sports – 16-21%*
• Strongest risk factor – history of ankle sprain
• Mechanism
 – Foot inversion or adduction with ankle in a plantarflexed position
 – Often associated with running, jumping activities

* Maehlum et al
Pathoanatomy

• Osteology
• Lateral ligamentous complex
 – ATFL, CFL, PTFL
• ATFL injury is most common
 – Midsubstance
 – Sometimes with CFL rupture
• Results in Biomechanical/Neuromuscular/Proprioceptive Deficits
 - Decreased proprioception in pts with chronic ankle instability*
 - Higher incidence of inversion ankle injury in athletes with lower dorsiflexion:plantarflexion ratios^

*Williams et al
^Baumhauer et al
Presentation

• Symptoms
 – Lateral pain, swelling, ecchymosis, sensation of instability

• Physical Exam
 – Inspection
 – Palpation
 – Drawer testing
Imaging

• Radiographs – Ottawa Rules
 – AP, lateral, mortise
 – Stress views?
 • Talar tilt and anterior drawer lateral

• MRI
 – Most sensitive and specific for soft tissues, cartilage lesions
Differential Diagnosis and Associated Injuries

- Peroneal tendon tears or instability
- Intraarticular pathology such as an osteochondral lesion of talus
- Subtalar injury/instability
- Syndesmosis injury
Classification

• Clinical Severity
• Number of Ligaments Injured
• Strain → Partial Tear → Complete Tear
• Stable vs unstable
 – Based upon severity of symptoms, exam
 – Guides treatment and timeline
Treatment

• Nonoperative is first line
 – 75-100% good results in literature whether treated operatively or non-operatively
• Functional rehab for athletes
 – RICE
 – Weightbearing as tolerated with crutches
 – Minimal immobilization
 – ROM and strengthening (especially evertors and proprioception) – timing of therapy and return to sport both dependent upon severity of injury and symptoms
Timeframe

• The athlete with a severe injury or who cannot tolerate therapy – immobilize! (<10 days)

• **Immobilization vs functional treatment for unstable inversion sprains** – when compared to cast immobilization for 3 weeks, functional treatment (bracing and ROM as tolerated) resulted in quicker return to play and less symptoms at 3 and 6 months based upon recent studies (no diff at 12 mo)*

*Ardevol et al
Prevention

• Strengthening
 – Fully activated strong evertors exceed taping, orthoses, or high top shoes in stabilizing against inversion injury*

• Taping
 – Improves proprioception^

• Bracing
 – Decreased incidence of ankle sprains in athletes in several studies

*Ashton-Miller et al
^Robbins et al
Surgery for acute unstable sprains?

• **Generally not recommended** as good results are usually obtained with nonoperative tx

• Some authors have recommended surgery for unstable acute injuries due to slightly lower rates of long-term instability and reinjury*

• We can’t predict who will fail non-op treatment

• Pijnenberg et al
Recurrent ankle sprains/
Chronic instability

- Incompetent ligamentous complex
- Neuromuscular conditions
- Tarsal coalition
Lateral ligamentous stabilization

- Open procedure to stabilize ankle through repair or reconstruction of ankle ligaments
- Requires period of immobilization
 - Usually 4-6 weeks
Intraarticular Pathology

- Osteochondral defects
- Loose bodies
2. High Ankle Sprains (Syndesmotic Injuries)
Incidence

- 10-20% of ankle sprains overall*
- More common in football and hockey

*Amendola
Pathoanatomy
Mechanism

- External rotation of the foot
- Causes injury to ligaments between tibia and fibula
Presentation

• Symptoms
 – Pain with weightbearing

• Physical Exam
 – Tender anteriorly between tibia and fibula
 • ‘tenderness length’
 – Tests
 • External rotation test*
 • Squeeze test
Imaging

• Radiographs
 – Should be obtained for all patients with suspected syndesmotic injury
 – Widening may be present
 • >6mm tib-fib clear space on AP*
 – Avulsion fractures in up to 50%

• Stress Radiographs

• MRI
 – 100% sensitive, 93% specific for AITFL injury (confirmed arthroscopically)^

*Harper ^Takao
Classification

- Type I – sprain without diastasis
- Type II – sprain with latent diastasis
- Type III – frank diastasis

- Increasing severity and classification guides treatment!
Treatment

- **Type I – sprain with no diastasis** – no widening on static or stress films
 - Stable injuries, treat symptomatically, and with functional rehab
 - Take about twice as long as a lateral ankle sprain
 - Taylor et al – 1/3 of patients reported some chronic stiffness and 1/4 had some chronic activity-related pain
Treatment

• **Type II – latent diastasis** - widening on stress films but no widening on static films
• CT or MRI to confirm syndesmosis alignment
• 3-4 weeks nonweightbearing in a cast
• 1-2 weeks of progressive weightbearing followed by radiographs to ensure that there has been no loss of alignment
• Followed by functional rehab
Treatment

- **Type III** — **frank diastasis** — disrupted mortise on static films
- Surgery
- 1 or 2 screws used to hold the reduced syndesmosis together
- Depending upon the associated avulsions or ligamentous injuries, this may involve arthroscopy, medial ligament repair, or open syndesmotic repair
3. Turf Toe
Mechanism

• Hyperextension injury to the first metatarsophalangeal joint (MTP)
• Axial load to a plantarflexed ankle
• 1990 Survey showed 45% of NFL players had experienced a turf toe injury*
• Underappreciation of these injuries by athletes or medical providers may lead to undertreatment

*Rodeo
Anatomy

- Capsule/ligament/sesamoid complex injury – usually injury is distal to the sesamoids
- Injury ranges from a mild sprain to complete disruption of stabilizing structures
Presentation

- Pain at the great toe MTP joint, with push-off, possibly with swelling/ecchymosis
- Tender at or distal to sesamoids
- Drawer test
Imaging

- Plain films
 - Usually normal
 - Sesamoids are key
- MRI can help determine the severity of the soft tissue disruption and assess bony structures

* from Anderson, Hunt, McCormack
Classification

- **Grade I** – mild attenuation of capsuloligamentous structures, minimal edema
- **Grade II** – partial tear of capsuloligamentous structures, more edema and tenderness
- **Grade III** – complete disruption of capsuloligamentous complexes
Treatment

• **Grade I** – RICE, return to play as tolerated, consider taping, minimal days missed

• **Grade II** – RICE, partial weightbearing, ROM of toe after a few days, usually will require 2 weeks for return to play

Rigid Orthosis

prevents break in shoe at MTP, minimizing MTP extension
Treatment

• **Grade III** – RICE, consider immobilization with partial weightbearing, usually 6-8 weeks for full return to play

• ? Consider acute operative intervention with repair of capsuloligamentous structures

• Anderson et al described 9 high-level athletes who underwent acute repair with 7/9 returning to prior level of play
Outcomes

• Clanton et al – surveyed 20 players 5 years after turf toe injury – 50% still had activity-related pain

• Some may be minor injuries, but it’s important to identify the severe turf toe injury
Conclusion

- For foot and ankle injuries, establishing the correct **diagnosis** as well as the **severity** of the injury guides the treatment plan, the timeline for return to play, and gives the athlete a more accurate prognosis.
Thank YOU!
Sources